Product Description

Radial insert ball bearings are one-row, prepared-to-match units comprising a reliable outer ring and an interior ring prolonged on 1 or the two sides. Bearings with an interior ring extended on the two sides undergo less tilting of the internal ring and as a result operate a lot more efficiently. Radial insert ball bearings are notably simple to match, are ideal for drawn shafts of grades h6 to h9, and can be relubricated with only a number of exceptions
 Pillow block bearings are made of housing and a bearing. A lot of pillow blocks have a replaceable bearing, referred to as an insert bearing. Bearings used with pillow block housings generally are self-aligning to compensate for angular misalignments. Pillow blocks are obtainable with numerous diverse bearing sorts, which includes Plain Bearings, Ball Bearings, Roller Bearings, Tapered-Roller Bearings, Spherical-Roller Bearings, Cylindrical-Roller Bearings, Needle-Roller Bearings, Hydrodynamic Bearings

  • Plummer block housing bearing
  • Plummer block housing bearing with flange
  • Square Plummer block housing bearing
  • Plummer block housing bearing with suspension seat
  • Plummer block housing bearing  with spherical seat
  • Plummer block housing bearing with low foot vertical seat

  •  

BEARING ID OD WD
CODE (mm) (mm) (mm)
UCP203 17 27.four 129
UCP204 20 thirty 134
UCP205 twenty five 34.one 142
UCP206 thirty 38.one 167
UCP207 35 forty two.9 172
UCP208 40 forty nine.two 186
UCP209 forty five forty nine.two 192
UCP210 fifty 51.6 208
UCP211 55 fifty five.6 233
UCP212 60 65.1 243
UCP213 65 65.one 268
UCP214 70 74.six 274
UCP215 75 77.eight 300
UCP216 80 82.six 305
UCP217 85 eighty five.7 330
UCP218 ninety 96 356
UCP220 one hundred 108 390
UCP305 twenty five 38 175
UCP306 thirty 43 a hundred and eighty
UCP307 35 forty eight 210
UCP308 40 52 220
UCP309 45 fifty seven 245
UCP310 50 61 275
UCP311 fifty five sixty six 310
UCP312 sixty seventy one 330
UCP313 65 seventy five 340
UCP314 70 78 360
UCP315 75 eighty two 380
UCP316 80 86 400
UCP317 eighty five 96 420
UCP318 90 ninety six 430
UCP319 ninety five 103 470
UCP320 a hundred 108 490
UCP321 one zero five 112 490
UCP322 110 117 520
UCP324 120 126 570
UCP326 one hundred thirty one hundred thirty five 600
UCP328 one hundred forty one hundred forty five 620

Our Merchandise Traces:
one. Deep groove ball bearings (68series,69series,60series,62series,63series,64series)
two.Tapered roller bearing(320 sequence,322 collection,323 series)
3.Linear bearing
four.Thrust ball bearing(511 sequence,512 collection,513 series)
5.Cylindrical roller bearing(NU10 collection,NJ2 Series,N3 series, NN sequence)
6.Needle roller bearing
seven.Angular contact ball bearing(70 sequence.72 collection.73 collection.74 collection)
8.Spherical roller bearing
nine.Thurst roller bearing
10.Spherical ball bearing(230 collection,222series,223series)
eleven.pillow block bearing(UCP collection, UCF collection, UCT collection, UCFL series)

FAQ:

Q: Are you buying and selling company or maker ?

A: We are factory of the bearing in china

Q: How long is your shipping and delivery time?

A: Normally it is 5-10 times if the items are in stock. or it is 15-twenty times if the products are not in inventory,
it is according to amount of the bearing china.

Q: Do you provide samples ? is it free of charge or further ?

A: Indeed, we could offer you the sample for free cost but do not pay out the value of freight.

Q: What is your conditions of payment ?

A: Payment=10000USD, thirty% T/T in advance ,
balance prior to shippment.
If you have one more query, pls feel cost-free to get in touch with us.
 

US $1-10
/ Piece
|
1 Piece

(Min. Order)

###

Contact Angle: 0
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel

###

Customization:

###

BEARING ID OD WD
CODE (mm) (mm) (mm)
UCP203 17 27.4 129
UCP204 20 30 134
UCP205 25 34.1 142
UCP206 30 38.1 167
UCP207 35 42.9 172
UCP208 40 49.2 186
UCP209 45 49.2 192
UCP210 50 51.6 208
UCP211 55 55.6 233
UCP212 60 65.1 243
UCP213 65 65.1 268
UCP214 70 74.6 274
UCP215 75 77.8 300
UCP216 80 82.6 305
UCP217 85 85.7 330
UCP218 90 96 356
UCP220 100 108 390
UCP305 25 38 175
UCP306 30 43 180
UCP307 35 48 210
UCP308 40 52 220
UCP309 45 57 245
UCP310 50 61 275
UCP311 55 66 310
UCP312 60 71 330
UCP313 65 75 340
UCP314 70 78 360
UCP315 75 82 380
UCP316 80 86 400
UCP317 85 96 420
UCP318 90 96 430
UCP319 95 103 470
UCP320 100 108 490
UCP321 105 112 490
UCP322 110 117 520
UCP324 120 126 570
UCP326 130 135 600
UCP328 140 145 620
US $1-10
/ Piece
|
1 Piece

(Min. Order)

###

Contact Angle: 0
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel

###

Customization:

###

BEARING ID OD WD
CODE (mm) (mm) (mm)
UCP203 17 27.4 129
UCP204 20 30 134
UCP205 25 34.1 142
UCP206 30 38.1 167
UCP207 35 42.9 172
UCP208 40 49.2 186
UCP209 45 49.2 192
UCP210 50 51.6 208
UCP211 55 55.6 233
UCP212 60 65.1 243
UCP213 65 65.1 268
UCP214 70 74.6 274
UCP215 75 77.8 300
UCP216 80 82.6 305
UCP217 85 85.7 330
UCP218 90 96 356
UCP220 100 108 390
UCP305 25 38 175
UCP306 30 43 180
UCP307 35 48 210
UCP308 40 52 220
UCP309 45 57 245
UCP310 50 61 275
UCP311 55 66 310
UCP312 60 71 330
UCP313 65 75 340
UCP314 70 78 360
UCP315 75 82 380
UCP316 80 86 400
UCP317 85 96 420
UCP318 90 96 430
UCP319 95 103 470
UCP320 100 108 490
UCP321 105 112 490
UCP322 110 117 520
UCP324 120 126 570
UCP326 130 135 600
UCP328 140 145 620

Shaft Collar

A shaft collar is a common machine component that provides mechanical support to shafts. It is found in motors and gearboxes and serves several important functions. Its design makes it an easy component to install. In addition to providing mechanical support to shafts, shaft collars can also serve as locating components and bearing faces.
Shaft Collar

Sizes

Shaft collars are complex components with several factors that determine their performance. Typical considerations include the style, materials used, bore size, and shaft geometry. Manufacturers typically have information on these factors on their websites. Users can also contact them for advice. These components are available in different sizes and types.
Shaft collars are available in a wide range of sizes, from 1/8 inch to six inches. They can also be re-bored if necessary. There are two main types of shaft collars. The basic one uses set screws, which may mar the shaft. The other type features a clamp screw and a hinge on one side. This eliminates the risk of losing screws.
The most common types of shaft collars are made from steel or aluminum. Plastic shaft collars are lightweight and inexpensive, but have reduced holding power. Steel shaft collars are more durable and hold their shape without bending. They also tend to be corrosion resistant. The steel grades used can have a big impact on their performance. For example, the 12L14 alloy is easier to machine, but does not do well in welding applications. Stainless steel shaft collars offer enhanced corrosion resistance, but reduced holding power. They are most commonly made from 304 stainless steel.
Shaft collars are an integral part of many mechanical systems. They are used to mount shafts onto flat surfaces and hold mechanical components in place. These accessories are available in a wide range of sizes and styles. Depending on the application, a shaft collar can be made to fit virtually any shaft.
The material used for shaft collars is also an important factor. The material of the shaft collar can make a big difference in the performance of the collar. The screw can be either flat or hex. The material will also determine the holding power. A screw with a hardened center will provide better holding power.
Another factor affecting the holding power of shaft collars is its surface treatment. The most common types are steel, black oxide, and zinc-plated. The latter is beneficial as it reduces the friction coefficient and enhances the holding power. Zinc-plated collars are better corrosion resistant than black oxide. However, the black oxide treatment is more effective because it prevents slippage.

Construction

Shaft collar construction involves the construction of a collar around an underground shaft. This structure consists of steel casing and concrete that extends below the surface of the ground. The concrete may be constructed using conventional or specialty cements. It may also contain accelerators and other additives to improve its holding strength. The concrete may also contain heavyweight or lightweight aggregates for optimal properties.
There are two main types of shaft collars. The double split collar is the most common type. It has a split design in the middle and is fastened using two allen head cap screws on each side. It has greater holding power than a solid collar, and the two-piece design makes it easier to install and replace. In addition, double split collars don’t require disassembling the entire shaft and its components.
There are many factors to consider when selecting a shaft collar. The material, holding power, and surface treatment of the shaft collar will affect its ability to withstand the load without slipping. These factors must match the specifications of the application in order to maximize its safety. A guide can help you choose the most appropriate shaft collar for your needs. The holding power of a shaft collar depends on the material used for construction and the screw size.
Shaft collars are used for a variety of applications that require a secure grip on mechanical components. They can be used on shafts, tubes, piping, and even flat surfaces. Only the highest quality collars are approved for use in industrial settings. These collars help ensure proper alignment of mechanical components and prevent any unnecessary movement. There are three different types of shaft collars. One type is a two-piece collar that is held together by two socket head screws.
Shaft collars may include an extended concrete pad at the surface. This concrete pad can support surface equipment and piping support assemblies. The shaft collar extends below temporary bracing material and within the retainment wall. The extended portion of the collar is then extended into the competent rock. From there, the collar transitions to a shaft lining assembly.
Shaft Collar

Functions

A shaft collar is a simple device that plays a critical role in a wide variety of industrial applications. Its primary functions are to hold components in place, locate components on the shaft, and form an attachment between a shaft and another component. In designing a shaft collar, a designer needs to consider several factors, including the material, bore size, and geometry of the shaft. It is also important to consider the specific requirements of the system.
Threaded collars are superior to smooth-bore collars in many ways. Threaded collars are more resistant to axial loads than smooth-bore collars, which rely on friction. Because the collar and shaft are threaded, they are practically impossible to move axially without breaking the shaft.
There are many types of shaft collars, each with their own unique properties. Each collar has different applications, and its performance must match the needs of the application. For many applications, holding power is paramount, while other performance factors include weldability, inertia, conductivity, corrosion resistance, and precision of collar-face relative to the bore.
While shaft collars may exert some holding force, they also exert other forces on the shaft. For example, they are ideal for splitting hubs, where they act as interfaces between various components. In addition, their close tolerances allow them to exert minimal force on the hub. This allows them to provide increased holding power while minimizing the force needed to close the hub.
Despite their simplicity, the shaft collar plays a crucial role in machine design. They hold components in place and provide necessary positioning for power transmission. Additionally, they are used as spacers in motor assemblies. And, they can also act as mechanical stops, limiting the movement of the shaft. You can find them in virtually any type of machinery.
Another type of shaft collar is the threaded collar, which can be axially or radially attached to the shaft. Its design has an internal thread that helps to precisely position it along the shaft. Internal threads also offer enhanced support for high axial loads. Internal threads also act as a positive mechanical stop.

Applications

Shaft collars are used in a variety of industrial applications. They serve as accurate stops and easy-to-adjust spacers. They can be used on glass, thin-wall tubing, and plastic. Other applications include optical measuring instruments and positioning systems for MRI machines. These collars are available in different sizes, materials, and styles.
The material used for shaft collars can have a significant impact on their performance. A collar’s holding power is also affected by the strength of its screw. Generally, a collar manufacturer will provide a screw that is compatible with the application. However, in some cases, it is necessary to use a nonstandard screw.
The clamp-style collar is reliable under constant loads, but it may need extra support when shock loads are present. In these situations, a small mass is impacted, and high forces are created. A positive stop can help a clamp-style collar stay in place during such shock loads. Alternatively, a collar undercut on a shaft can provide positive stops in both axial directions.
There are many different shaft collar designs and styles. Choose the right one for your application by considering your specifications. Different styles have different purposes, so consider the type and material that is right for your application. Some manufacturers offer a variety of different styles to choose from. You can visit their website or call their customer service representatives for assistance. This way, you can choose the best shaft collar for your specific needs. These collars are a very important part of many mechanical systems.
Clamp-style collars are an excellent choice when axial adjustment along the shaft is required frequently. These collars are easy to install and remove and do not mar the shaft. In addition, they provide excellent clamping force and impressive holding power. Quick-clamp collars are also a great choice for light-duty applications. They allow for fast and easy adjustment and are particularly useful in packaging and printing industries.
Shaft collars are composed of two components: a central bore and a second component. The first component is preferably made of resilient elastomeric material. The second component is made of a plastic material and has a relative stiffness that helps the shaft collar slide on a shaft without causing too much stress.
China Eccentric Locking Collar Type Insert Bearing Aels203-011nw3 NTN NSK Wheel Bearing Auto Parts Auto Bearing Rolling Bearings Motor Bearing     axle shaft collarChina Eccentric Locking Collar Type Insert Bearing Aels203-011nw3 NTN NSK Wheel Bearing Auto Parts Auto Bearing Rolling Bearings Motor Bearing     axle shaft collar
editor by czh 2023-01-31